UFJF - Machine Learning Toolkit  0.51.8
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 Cmltk::metrics::dist::BaseMatrix
 Cmltk::metrics::dist::DistanceMatrix< DistanceFunc >
 Cmltk::datasets::BlobsPair
 Cmltk::validation::CrossValidationStructure to manage cross validation
 Cmltk::Data< T >Wrapper for the dataset data
 Cmltk::Data< double >
 Cmltk::Data< T >
 Cmltk::metrics::dist::DistanceMetric< T >Base functor class for the implementation of new metrics metrics
 Cmltk::metrics::dist::Euclidean< T >
 Cmltk::metrics::dist::DistanceMetric< double >
 Cmltk::metrics::dist::Euclidean< double >
 Cmltk::metrics::dist::AdditiveSymmetric< T >
 Cmltk::metrics::dist::Average< T >
 Cmltk::metrics::dist::AverageL1Linf< T >
 Cmltk::metrics::dist::AvgManhattan< T >
 Cmltk::metrics::dist::Bhattacharyya< T >
 Cmltk::metrics::dist::Canberra< T >
 Cmltk::metrics::dist::Chebyshev< T >
 Cmltk::metrics::dist::Chord< T >
 Cmltk::metrics::dist::Clark< T >
 Cmltk::metrics::dist::Cosine< T >
 Cmltk::metrics::dist::Dice< T >
 Cmltk::metrics::dist::Divergence< T >
 Cmltk::metrics::dist::Euclidean< T >Functor for the computation of the euclidean metrics between two points
 Cmltk::metrics::dist::Hassanat< T >
 Cmltk::metrics::dist::Hellinger< T >
 Cmltk::metrics::dist::Jaccard< T >
 Cmltk::metrics::dist::Jeffreys< T >
 Cmltk::metrics::dist::JensenDifference< T >
 Cmltk::metrics::dist::JensenShannon< T >
 Cmltk::metrics::dist::KDivergence< T >
 Cmltk::metrics::dist::KullbackLeibler< T >
 Cmltk::metrics::dist::KumarJohnson< T >
 Cmltk::metrics::dist::Lorentzian< T >
 Cmltk::metrics::dist::Manhattan< T >
 Cmltk::metrics::dist::Matusita< T >
 Cmltk::metrics::dist::MaxSymmetric< T >
 Cmltk::metrics::dist::MinSymmetric< T >
 Cmltk::metrics::dist::Neyman< T >
 Cmltk::metrics::dist::NonIntersection< T >
 Cmltk::metrics::dist::Pearson< T >
 Cmltk::metrics::dist::ProbabilisticSymmetric< T >
 Cmltk::metrics::dist::Sorensen< T >
 Cmltk::metrics::dist::Squared< T >
 Cmltk::metrics::dist::SquaredChiSquared< T >
 Cmltk::metrics::dist::SquaredChord< T >
 Cmltk::metrics::dist::SquaredEuclidean< T >
 Cmltk::metrics::dist::Taneja< T >
 Cmltk::metrics::dist::Topsoe< T >
 Cmltk::DSM< T >
 Cstd::exceptionSTL class
 Cstd::runtime_errorSTL class
 Cmltk::featselect::FeatureSelection< T >
 Cmltk::featselect::FeatureSelection< double >
 Cmltk::featselect::AOS< T >
 Cmltk::featselect::Fisher< T >
 Cmltk::featselect::Golub< T >
 Cmltk::featselect::RFE< T >
 CGnuplot
 Cmltk::featselect::AOS< T >::Hash
 Cmltk::featselect::AOS< T >::Heap
 Cmltk::classifier::int_dll
 Cmltk::Kernel< T >Class for the kernel computations
 Cmltk::Kernel< double >
 Cmltk::Kernel< T >
 Cmltk::Learner< T >
 Cmltk::clusterer::Clusterer< double >
 Cmltk::Learner< T >
 Cmltk::classifier::Classifier< T >
 Cmltk::clusterer::Clusterer< T, Callable >
 Cmltk::ensemble::Ensemble< T >Namespace for ensemble methods
 Cmltk::regressor::Regressor< T >
 Cmltk::OverSampling< T, Callable >Base class for the implementation of over sampling methods
 Cmltk::OverSampling< double, metrics::dist::Euclidean< double > >
 Cmltk::BorderlineSMOTEOne< T, Callable >Functor for the implementation of the Borderline SMOTE 1 over sampling algorithm
 Cmltk::SMOTE< T, Callable >Functor for the implementation of the SMOTE over sampling algorithm
 Cmltk::Point< T, Rep >Wrapper for the point data
 Cmltk::Point< double >
 Cmltk::Point< size_t >
 Cmltk::Point< T >
 Cmltk::datasets::RegPair
 Cmltk::RSM< T >
 Cmltk::featselect::AOS< T >::select_gamma
 Cmltk::featselect::AOS< T >::select_weight
 Cmltk::Solution
 Cmltk::validation::ValidationReportSolution for the validation of a ML method
 Cmltk::Statistics< T >
 Cmltk::synced_streamA helper class to synchronize printing to an output stream by different threads
 Cmltk::ThreadPoolA C++17 thread pool class. The user submits tasks to be executed into a queue. Whenever a thread becomes available, it pops a task from the queue and executes it. Each task is automatically assigned a future, which can be used to wait for the task to finish executing and/or obtain its eventual return value
 Cmltk::TimerWrapper for the implementation of a simple timer
 Cmltk::timerA helper class to measure execution time for benchmarking purposes
 Cmltk::validation::TrainTestPair< T >A struct representing a pair with training and test data
 Cmltk::visualize::Visualization< T >Class for data visualization