▼Cmltk::metrics::dist::BaseMatrix | |
Cmltk::metrics::dist::DistanceMatrix< DistanceFunc > | |
Cmltk::datasets::BlobsPair | |
Cmltk::validation::CrossValidation | Structure to manage cross validation |
Cmltk::Data< T > | Wrapper for the dataset data |
Cmltk::Data< double > | |
Cmltk::Data< T > | |
▼Cmltk::metrics::dist::DistanceMetric< T > | Base functor class for the implementation of new metrics metrics |
Cmltk::metrics::dist::Euclidean< T > | |
▼Cmltk::metrics::dist::DistanceMetric< double > | |
Cmltk::metrics::dist::Euclidean< double > | |
Cmltk::metrics::dist::AdditiveSymmetric< T > | |
Cmltk::metrics::dist::Average< T > | |
Cmltk::metrics::dist::AverageL1Linf< T > | |
Cmltk::metrics::dist::AvgManhattan< T > | |
Cmltk::metrics::dist::Bhattacharyya< T > | |
Cmltk::metrics::dist::Canberra< T > | |
Cmltk::metrics::dist::Chebyshev< T > | |
Cmltk::metrics::dist::Chord< T > | |
Cmltk::metrics::dist::Clark< T > | |
Cmltk::metrics::dist::Cosine< T > | |
Cmltk::metrics::dist::Dice< T > | |
Cmltk::metrics::dist::Divergence< T > | |
Cmltk::metrics::dist::Euclidean< T > | Functor for the computation of the euclidean metrics between two points |
Cmltk::metrics::dist::Hassanat< T > | |
Cmltk::metrics::dist::Hellinger< T > | |
Cmltk::metrics::dist::Jaccard< T > | |
Cmltk::metrics::dist::Jeffreys< T > | |
Cmltk::metrics::dist::JensenDifference< T > | |
Cmltk::metrics::dist::JensenShannon< T > | |
Cmltk::metrics::dist::KDivergence< T > | |
Cmltk::metrics::dist::KullbackLeibler< T > | |
Cmltk::metrics::dist::KumarJohnson< T > | |
Cmltk::metrics::dist::Lorentzian< T > | |
Cmltk::metrics::dist::Manhattan< T > | |
Cmltk::metrics::dist::Matusita< T > | |
Cmltk::metrics::dist::MaxSymmetric< T > | |
Cmltk::metrics::dist::MinSymmetric< T > | |
Cmltk::metrics::dist::Neyman< T > | |
Cmltk::metrics::dist::NonIntersection< T > | |
Cmltk::metrics::dist::Pearson< T > | |
Cmltk::metrics::dist::ProbabilisticSymmetric< T > | |
Cmltk::metrics::dist::Sorensen< T > | |
Cmltk::metrics::dist::Squared< T > | |
Cmltk::metrics::dist::SquaredChiSquared< T > | |
Cmltk::metrics::dist::SquaredChord< T > | |
Cmltk::metrics::dist::SquaredEuclidean< T > | |
Cmltk::metrics::dist::Taneja< T > | |
Cmltk::metrics::dist::Topsoe< T > | |
Cmltk::DSM< T > | |
▼Cstd::exception | STL class |
►Cstd::runtime_error | STL class |
CGnuplotException | A C++ interface to gnuplot |
Cmltk::featselect::FeatureSelection< T > | |
▼Cmltk::featselect::FeatureSelection< double > | |
Cmltk::featselect::AOS< T > | |
Cmltk::featselect::Fisher< T > | |
Cmltk::featselect::Golub< T > | |
Cmltk::featselect::RFE< T > | |
CGnuplot | |
Cmltk::featselect::AOS< T >::Hash | |
Cmltk::featselect::AOS< T >::Heap | |
Cmltk::classifier::int_dll | |
Cmltk::Kernel< T > | Class for the kernel computations |
Cmltk::Kernel< double > | |
Cmltk::Kernel< T > | |
▼Cmltk::Learner< T > | |
►Cmltk::clusterer::Clusterer< double > | |
Cmltk::clusterer::KMeans< T, Callable > | Wrapper for the implementation of the K-Means clustering algorithm |
▼Cmltk::Learner< T > | |
►Cmltk::classifier::Classifier< T > | |
►Cmltk::classifier::DualClassifier< double > | |
Cmltk::classifier::IMADual< T > | |
►Cmltk::classifier::PrimalClassifier< double > | |
Cmltk::classifier::IMAp< T > | Wrapper for the implementation of the Incremental Margin Algorithm primal |
Cmltk::classifier::IMApFixedMargin< T > | Wrapper for the implementation of the Incremental Margin Algorithm primal with fixed margin |
Cmltk::classifier::KNNClassifier< T, Callable > | Wrapper for the implementation of the K-Nearest Neighbors classifier algorithm |
►Cmltk::classifier::DualClassifier< T > | |
Cmltk::classifier::OneVsAll< T > | Wrapper for the implementation of the one vs all multi class classification algorithm |
Cmltk::classifier::OneVsOne< T > | Wrapper for the implementation of the one vs one multi class classification algorithm |
Cmltk::classifier::PerceptronDual< T > | Wrapper for the implementation of the Perceptron dual algorithm |
Cmltk::classifier::PerceptronFixedMarginDual< T > | Wrapper for the implementation of the Perceptron dual with fixed margin algorithm |
Cmltk::classifier::SMO< T > | |
►Cmltk::classifier::PrimalClassifier< T > | |
Cmltk::classifier::BalancedPerceptron< T > | |
Cmltk::classifier::OneVsAll< T > | Wrapper for the implementation of the one vs all multi class classification algorithm |
Cmltk::classifier::OneVsOne< T > | Wrapper for the implementation of the one vs one multi class classification algorithm |
Cmltk::classifier::PerceptronFixedMarginPrimal< T > | Wrapper for the implementation of the Perceptron primal with fixed margin algorithm |
Cmltk::classifier::PerceptronPrimal< T > | Wrapper for the implementation of the Perceptron primal algorithm |
Cmltk::ensemble::AdaBoostClassifier< T > | |
Cmltk::ensemble::AutoWeightedVoting< T > | |
Cmltk::ensemble::BaggingClassifier< T > | |
Cmltk::ensemble::PerceptronCommittee< T > | |
Cmltk::ensemble::VotingClassifier< T > | |
Cmltk::clusterer::Clusterer< T, Callable > | |
►Cmltk::ensemble::Ensemble< T > | Namespace for ensemble methods |
Cmltk::ensemble::AdaBoostClassifier< T > | |
Cmltk::ensemble::AutoWeightedVoting< T > | |
Cmltk::ensemble::BaggingClassifier< T > | |
Cmltk::ensemble::PerceptronCommittee< T > | |
Cmltk::ensemble::VotingClassifier< T > | |
►Cmltk::regressor::Regressor< T > | |
►Cmltk::regressor::PrimalRegressor< double > | |
Cmltk::regressor::KNNRegressor< T, Callable > | Wrapper for the implementation of the K-Nearest Neighbors regression algorithm |
Cmltk::regressor::LMSPrimal< T > | Wrapper for the implementation of the Least Mean Square primal algorithm |
Cmltk::regressor::DualRegressor< T > | |
Cmltk::regressor::PrimalRegressor< T > | |
Cmltk::OverSampling< T, Callable > | Base class for the implementation of over sampling methods |
▼Cmltk::OverSampling< double, metrics::dist::Euclidean< double > > | |
Cmltk::BorderlineSMOTEOne< T, Callable > | Functor for the implementation of the Borderline SMOTE 1 over sampling algorithm |
Cmltk::SMOTE< T, Callable > | Functor for the implementation of the SMOTE over sampling algorithm |
Cmltk::Point< T, Rep > | Wrapper for the point data |
Cmltk::Point< double > | |
Cmltk::Point< size_t > | |
Cmltk::Point< T > | |
Cmltk::datasets::RegPair | |
Cmltk::RSM< T > | |
Cmltk::featselect::AOS< T >::select_gamma | |
Cmltk::featselect::AOS< T >::select_weight | |
▼Cmltk::Solution | |
Cmltk::validation::ValidationReport | Solution for the validation of a ML method |
Cmltk::Statistics< T > | |
Cmltk::synced_stream | A helper class to synchronize printing to an output stream by different threads |
Cmltk::ThreadPool | A C++17 thread pool class. The user submits tasks to be executed into a queue. Whenever a thread becomes available, it pops a task from the queue and executes it. Each task is automatically assigned a future, which can be used to wait for the task to finish executing and/or obtain its eventual return value |
Cmltk::Timer | Wrapper for the implementation of a simple timer |
Cmltk::timer | A helper class to measure execution time for benchmarking purposes |
Cmltk::validation::TrainTestPair< T > | A struct representing a pair with training and test data |
Cmltk::visualize::Visualization< T > | Class for data visualization |