Wrapper for the implementation of the K-Nearest Neighbors regression algorithm.
More...
|
| KNNRegressor (const Data< T > &_samples, size_t _k=3) |
|
| KNNRegressor (size_t _k=3) |
|
bool | train () override |
| Function that execute the training phase of a Learner. More...
|
|
std::string | getFormulationString () override |
| getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual). More...
|
|
double | evaluate (const Point< T > &p, bool raw_value=false) override |
| Returns the class of a feature point based on the trained Learner. More...
|
|
| PrimalRegressor (DataPointer< double > samples) |
|
double | evaluate (const Point< double > &p, bool raw_value=false) override |
| Returns the class of a feature point based on the trained Learner. More...
|
|
std::string | getFormulationString () override |
| getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual). More...
|
|
| Regressor (DataPointer< T > samples) |
|
Solution | getSolution () const |
| getSolution Returns the solution of the regressor. More...
|
|
Solution * | getSolutionRef () |
| getSolution Returns a reference to the solution of the regressor. More...
|
|
void | setW (const std::vector< double > &w) |
| setW Set the weights vector of the regressor. More...
|
|
void | setSolution (Solution solution) |
| setSolution Set a solution for the regressor. More...
|
|
| Learner (DataPointer< T > _samples) |
|
| Learner (const Learner< T > &learner) |
|
virtual mltk::Point< double > | batchEvaluate (const Data< T > &data) |
| evaluate a batch of points. More...
|
|
auto | getSamples () |
| Get the Data used by the learner. More...
|
|
double | getElapsedTime () const |
| Get the elapsed time in the training phase of the Learner. More...
|
|
int | getCtot () const |
| Get the total number of updates of the Learner. More...
|
|
int | getSteps () const |
| getSteps Returns the number of steps through the data by the Learner. More...
|
|
int | getUpdates () const |
| getUpdates Returns the number of updates needed to get to the the solution. More...
|
|
double | getMaxTime () const |
| getMaxTime Returns the maximum running time in the training phase of the Learner. More...
|
|
double | getPredictionProbability () const |
| Get the probability of the last prediction. More...
|
|
void | setSeed (const size_t _seed) |
| Set the seed to be used by the learner. More...
|
|
virtual void | setSamples (const Data< T > &data) |
| setSamples Set the samples used by the Learner. More...
|
|
virtual void | setSamples (DataPointer< T > data) |
| setSamples Set the samples used by the Learner. More...
|
|
void | setTimer (Timer _timer) |
| setTimer Set the timer used by the Learner. More...
|
|
void | setSteps (int _steps) |
| Set the partial number of steps used in the training phase of the Learner. More...
|
|
void | setCtot (int _ctot) |
| Set the partial number of updates of the Learner. More...
|
|
void | setVerbose (int _verbose) |
| Set the level of verbose. More...
|
|
void | setStartTime (double stime) |
| setStartTime Set the initial time of the Learner. More...
|
|
void | setMaxTime (double maxtime) |
| Set the max time of execution. More...
|
|
void | setEPS (double eps) |
| setEPS Set the precision of the Learner. More...
|
|
void | setMaxIterations (int max_it) |
| setMaxIterations Set the max number of iterations of the Learner. More...
|
|
void | setMaxEpochs (int MAX_EPOCHS) |
| Set the max number of epochs for the learner training. More...
|
|
void | setMaxUpdates (int max_up) |
| setMaxIterations Set the max number of updates of the Learner. More...
|
|
void | setLearningRate (double learning_rate) |
| Set the learning rate of the Learner. More...
|
|
template<typename T = double, typename Callable = metrics::dist::Euclidean <T>>
class mltk::regressor::KNNRegressor< T, Callable >
Wrapper for the implementation of the K-Nearest Neighbors regression algorithm.