batchEvaluate(const Data< T > &data) | mltk::Learner< T > | virtual |
ctot | mltk::Learner< T > | protected |
EPS | mltk::Learner< T > | protected |
evaluate(const Point< T > &p, bool raw_value=false) override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
PrimalRegressor< double >::evaluate(const Point< double > &p, bool raw_value=false) override | mltk::regressor::PrimalRegressor< double > | inline |
getCtot() const | mltk::Learner< T > | inline |
getElapsedTime() const | mltk::Learner< T > | inline |
getFormulationString() override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
getMaxTime() const | mltk::Learner< T > | inline |
getPredictionProbability() const | mltk::Learner< T > | inline |
getSamples() | mltk::Learner< T > | inline |
getSolution() const | mltk::regressor::Regressor< T > | inline |
getSolutionRef() | mltk::regressor::Regressor< T > | inline |
getSteps() const | mltk::Learner< T > | inline |
getUpdates() const | mltk::Learner< T > | inline |
KNNRegressor()=default (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | |
KNNRegressor(const Data< T > &_samples, size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | inlineexplicit |
KNNRegressor(size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | inlineexplicit |
Learner()=default (defined in mltk::Learner< T >) | mltk::Learner< T > | |
Learner(DataPointer< T > _samples) (defined in mltk::Learner< T >) | mltk::Learner< T > | inlineexplicit |
Learner(const Learner< T > &learner) (defined in mltk::Learner< T >) | mltk::Learner< T > | inline |
MAX_EPOCH (defined in mltk::Learner< T >) | mltk::Learner< T > | protected |
MAX_IT | mltk::Learner< T > | protected |
max_time | mltk::Learner< T > | protected |
MAX_UP | mltk::Learner< T > | protected |
MIN_INC | mltk::Learner< T > | protected |
pred_prob (defined in mltk::Learner< T >) | mltk::Learner< T > | protected |
PrimalRegressor()=default (defined in mltk::regressor::PrimalRegressor< double >) | mltk::regressor::PrimalRegressor< double > | |
PrimalRegressor(DataPointer< double > samples) (defined in mltk::regressor::PrimalRegressor< double >) | mltk::regressor::PrimalRegressor< double > | inlineexplicit |
rate | mltk::Learner< T > | protected |
Regressor()=default (defined in mltk::regressor::Regressor< T >) | mltk::regressor::Regressor< T > | |
Regressor(DataPointer< T > samples) (defined in mltk::regressor::Regressor< T >) | mltk::regressor::Regressor< T > | inlineexplicit |
samples | mltk::Learner< T > | protected |
seed | mltk::Learner< T > | protected |
setCtot(int _ctot) | mltk::Learner< T > | inline |
setEPS(double eps) | mltk::Learner< T > | inline |
setLearningRate(double learning_rate) | mltk::Learner< T > | inline |
setMaxEpochs(int MAX_EPOCHS) | mltk::Learner< T > | inline |
setMaxIterations(int max_it) | mltk::Learner< T > | inline |
setMaxTime(double maxtime) | mltk::Learner< T > | inline |
setMaxUpdates(int max_up) | mltk::Learner< T > | inline |
setSamples(const Data< T > &data) | mltk::Learner< T > | inlinevirtual |
setSamples(DataPointer< T > data) | mltk::Learner< T > | inlinevirtual |
setSeed(const size_t _seed) | mltk::Learner< T > | inline |
setSolution(Solution solution) | mltk::regressor::Regressor< T > | inline |
setStartTime(double stime) | mltk::Learner< T > | inline |
setSteps(int _steps) | mltk::Learner< T > | inline |
setTimer(Timer _timer) | mltk::Learner< T > | inline |
setVerbose(int _verbose) | mltk::Learner< T > | inline |
setW(const std::vector< double > &w) | mltk::regressor::Regressor< T > | inline |
solution | mltk::regressor::Regressor< T > | protected |
start_time | mltk::Learner< T > | protected |
steps | mltk::Learner< T > | protected |
timer | mltk::Learner< T > | protected |
train() override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
verbose | mltk::Learner< T > | protected |
w | mltk::regressor::PrimalRegressor< double > | protected |
~Learner()=default (defined in mltk::Learner< T >) | mltk::Learner< T > | virtual |