| batchEvaluate(const Data< T > &data) | mltk::Learner< T > | virtual |
| ctot | mltk::Learner< T > | protected |
| EPS | mltk::Learner< T > | protected |
| evaluate(const Point< T > &p, bool raw_value=false) override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
| PrimalRegressor< double >::evaluate(const Point< double > &p, bool raw_value=false) override | mltk::regressor::PrimalRegressor< double > | inline |
| getCtot() const | mltk::Learner< T > | inline |
| getElapsedTime() const | mltk::Learner< T > | inline |
| getFormulationString() override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
| getMaxTime() const | mltk::Learner< T > | inline |
| getPredictionProbability() const | mltk::Learner< T > | inline |
| getSamples() | mltk::Learner< T > | inline |
| getSolution() const | mltk::regressor::Regressor< T > | inline |
| getSolutionRef() | mltk::regressor::Regressor< T > | inline |
| getSteps() const | mltk::Learner< T > | inline |
| getUpdates() const | mltk::Learner< T > | inline |
| KNNRegressor()=default (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | |
| KNNRegressor(const Data< T > &_samples, size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | inlineexplicit |
| KNNRegressor(size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >) | mltk::regressor::KNNRegressor< T, Callable > | inlineexplicit |
| Learner()=default (defined in mltk::Learner< T >) | mltk::Learner< T > | |
| Learner(DataPointer< T > _samples) (defined in mltk::Learner< T >) | mltk::Learner< T > | inlineexplicit |
| Learner(const Learner< T > &learner) (defined in mltk::Learner< T >) | mltk::Learner< T > | inline |
| MAX_EPOCH (defined in mltk::Learner< T >) | mltk::Learner< T > | protected |
| MAX_IT | mltk::Learner< T > | protected |
| max_time | mltk::Learner< T > | protected |
| MAX_UP | mltk::Learner< T > | protected |
| MIN_INC | mltk::Learner< T > | protected |
| pred_prob (defined in mltk::Learner< T >) | mltk::Learner< T > | protected |
| PrimalRegressor()=default (defined in mltk::regressor::PrimalRegressor< double >) | mltk::regressor::PrimalRegressor< double > | |
| PrimalRegressor(DataPointer< double > samples) (defined in mltk::regressor::PrimalRegressor< double >) | mltk::regressor::PrimalRegressor< double > | inlineexplicit |
| rate | mltk::Learner< T > | protected |
| Regressor()=default (defined in mltk::regressor::Regressor< T >) | mltk::regressor::Regressor< T > | |
| Regressor(DataPointer< T > samples) (defined in mltk::regressor::Regressor< T >) | mltk::regressor::Regressor< T > | inlineexplicit |
| samples | mltk::Learner< T > | protected |
| seed | mltk::Learner< T > | protected |
| setCtot(int _ctot) | mltk::Learner< T > | inline |
| setEPS(double eps) | mltk::Learner< T > | inline |
| setLearningRate(double learning_rate) | mltk::Learner< T > | inline |
| setMaxEpochs(int MAX_EPOCHS) | mltk::Learner< T > | inline |
| setMaxIterations(int max_it) | mltk::Learner< T > | inline |
| setMaxTime(double maxtime) | mltk::Learner< T > | inline |
| setMaxUpdates(int max_up) | mltk::Learner< T > | inline |
| setSamples(const Data< T > &data) | mltk::Learner< T > | inlinevirtual |
| setSamples(DataPointer< T > data) | mltk::Learner< T > | inlinevirtual |
| setSeed(const size_t _seed) | mltk::Learner< T > | inline |
| setSolution(Solution solution) | mltk::regressor::Regressor< T > | inline |
| setStartTime(double stime) | mltk::Learner< T > | inline |
| setSteps(int _steps) | mltk::Learner< T > | inline |
| setTimer(Timer _timer) | mltk::Learner< T > | inline |
| setVerbose(int _verbose) | mltk::Learner< T > | inline |
| setW(const std::vector< double > &w) | mltk::regressor::Regressor< T > | inline |
| solution | mltk::regressor::Regressor< T > | protected |
| start_time | mltk::Learner< T > | protected |
| steps | mltk::Learner< T > | protected |
| timer | mltk::Learner< T > | protected |
| train() override | mltk::regressor::KNNRegressor< T, Callable > | inlinevirtual |
| verbose | mltk::Learner< T > | protected |
| w | mltk::regressor::PrimalRegressor< double > | protected |
| ~Learner()=default (defined in mltk::Learner< T >) | mltk::Learner< T > | virtual |