UFJF - Machine Learning Toolkit  0.51.8
mltk::regressor::KNNRegressor< T, Callable > Member List

This is the complete list of members for mltk::regressor::KNNRegressor< T, Callable >, including all inherited members.

batchEvaluate(const Data< T > &data)mltk::Learner< T >virtual
ctotmltk::Learner< T >protected
EPSmltk::Learner< T >protected
evaluate(const Point< T > &p, bool raw_value=false) overridemltk::regressor::KNNRegressor< T, Callable >inlinevirtual
PrimalRegressor< double >::evaluate(const Point< double > &p, bool raw_value=false) overridemltk::regressor::PrimalRegressor< double >inline
getCtot() constmltk::Learner< T >inline
getElapsedTime() constmltk::Learner< T >inline
getFormulationString() overridemltk::regressor::KNNRegressor< T, Callable >inlinevirtual
getMaxTime() constmltk::Learner< T >inline
getPredictionProbability() constmltk::Learner< T >inline
getSamples()mltk::Learner< T >inline
getSolution() constmltk::regressor::Regressor< T >inline
getSolutionRef()mltk::regressor::Regressor< T >inline
getSteps() constmltk::Learner< T >inline
getUpdates() constmltk::Learner< T >inline
KNNRegressor()=default (defined in mltk::regressor::KNNRegressor< T, Callable >)mltk::regressor::KNNRegressor< T, Callable >
KNNRegressor(const Data< T > &_samples, size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >)mltk::regressor::KNNRegressor< T, Callable >inlineexplicit
KNNRegressor(size_t _k=3) (defined in mltk::regressor::KNNRegressor< T, Callable >)mltk::regressor::KNNRegressor< T, Callable >inlineexplicit
Learner()=default (defined in mltk::Learner< T >)mltk::Learner< T >
Learner(DataPointer< T > _samples) (defined in mltk::Learner< T >)mltk::Learner< T >inlineexplicit
Learner(const Learner< T > &learner) (defined in mltk::Learner< T >)mltk::Learner< T >inline
MAX_EPOCH (defined in mltk::Learner< T >)mltk::Learner< T >protected
MAX_ITmltk::Learner< T >protected
max_timemltk::Learner< T >protected
MAX_UPmltk::Learner< T >protected
MIN_INCmltk::Learner< T >protected
pred_prob (defined in mltk::Learner< T >)mltk::Learner< T >protected
PrimalRegressor()=default (defined in mltk::regressor::PrimalRegressor< double >)mltk::regressor::PrimalRegressor< double >
PrimalRegressor(DataPointer< double > samples) (defined in mltk::regressor::PrimalRegressor< double >)mltk::regressor::PrimalRegressor< double >inlineexplicit
ratemltk::Learner< T >protected
Regressor()=default (defined in mltk::regressor::Regressor< T >)mltk::regressor::Regressor< T >
Regressor(DataPointer< T > samples) (defined in mltk::regressor::Regressor< T >)mltk::regressor::Regressor< T >inlineexplicit
samplesmltk::Learner< T >protected
seedmltk::Learner< T >protected
setCtot(int _ctot)mltk::Learner< T >inline
setEPS(double eps)mltk::Learner< T >inline
setLearningRate(double learning_rate)mltk::Learner< T >inline
setMaxEpochs(int MAX_EPOCHS)mltk::Learner< T >inline
setMaxIterations(int max_it)mltk::Learner< T >inline
setMaxTime(double maxtime)mltk::Learner< T >inline
setMaxUpdates(int max_up)mltk::Learner< T >inline
setSamples(const Data< T > &data)mltk::Learner< T >inlinevirtual
setSamples(DataPointer< T > data)mltk::Learner< T >inlinevirtual
setSeed(const size_t _seed)mltk::Learner< T >inline
setSolution(Solution solution)mltk::regressor::Regressor< T >inline
setStartTime(double stime)mltk::Learner< T >inline
setSteps(int _steps)mltk::Learner< T >inline
setTimer(Timer _timer)mltk::Learner< T >inline
setVerbose(int _verbose)mltk::Learner< T >inline
setW(const std::vector< double > &w)mltk::regressor::Regressor< T >inline
solutionmltk::regressor::Regressor< T >protected
start_timemltk::Learner< T >protected
stepsmltk::Learner< T >protected
timermltk::Learner< T >protected
train() overridemltk::regressor::KNNRegressor< T, Callable >inlinevirtual
verbosemltk::Learner< T >protected
wmltk::regressor::PrimalRegressor< double >protected
~Learner()=default (defined in mltk::Learner< T >)mltk::Learner< T >virtual