UFJF - Machine Learning Toolkit  0.51.8
mltk::clusterer::Clusterer< T, Callable > Class Template Reference
Inheritance diagram for mltk::clusterer::Clusterer< T, Callable >:
Collaboration diagram for mltk::clusterer::Clusterer< T, Callable >:

Public Member Functions

 Clusterer (DataPointer< T > samples=nullptr, size_t clusters=0)
 
virtual std::vector< mltk::Point< size_t > > clusters ()
 
std::vector< mltk::Point< T > > centers ()
 
- Public Member Functions inherited from mltk::Learner< T >
 Learner (DataPointer< T > _samples)
 
 Learner (const Learner< T > &learner)
 
virtual bool train ()=0
 Function that execute the training phase of a Learner. More...
 
virtual double evaluate (const Point< T > &p, bool raw_value=false)=0
 Returns the class of a feature point based on the trained Learner. More...
 
virtual mltk::Point< double > batchEvaluate (const Data< T > &data)
 evaluate a batch of points. More...
 
virtual std::string getFormulationString ()=0
 getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual). More...
 
auto getSamples ()
 Get the Data used by the learner. More...
 
double getElapsedTime () const
 Get the elapsed time in the training phase of the Learner. More...
 
int getCtot () const
 Get the total number of updates of the Learner. More...
 
int getSteps () const
 getSteps Returns the number of steps through the data by the Learner. More...
 
int getUpdates () const
 getUpdates Returns the number of updates needed to get to the the solution. More...
 
double getMaxTime () const
 getMaxTime Returns the maximum running time in the training phase of the Learner. More...
 
double getPredictionProbability () const
 Get the probability of the last prediction. More...
 
void setSeed (const size_t _seed)
 Set the seed to be used by the learner. More...
 
virtual void setSamples (const Data< T > &data)
 setSamples Set the samples used by the Learner. More...
 
virtual void setSamples (DataPointer< T > data)
 setSamples Set the samples used by the Learner. More...
 
void setTimer (Timer _timer)
 setTimer Set the timer used by the Learner. More...
 
void setSteps (int _steps)
 Set the partial number of steps used in the training phase of the Learner. More...
 
void setCtot (int _ctot)
 Set the partial number of updates of the Learner. More...
 
void setVerbose (int _verbose)
 Set the level of verbose. More...
 
void setStartTime (double stime)
 setStartTime Set the initial time of the Learner. More...
 
void setMaxTime (double maxtime)
 Set the max time of execution. More...
 
void setEPS (double eps)
 setEPS Set the precision of the Learner. More...
 
void setMaxIterations (int max_it)
 setMaxIterations Set the max number of iterations of the Learner. More...
 
void setMaxEpochs (int MAX_EPOCHS)
 Set the max number of epochs for the learner training. More...
 
void setMaxUpdates (int max_up)
 setMaxIterations Set the max number of updates of the Learner. More...
 
void setLearningRate (double learning_rate)
 Set the learning rate of the Learner. More...
 

Protected Attributes

Callable dist_function
 Function used to compute the metrics between two points. More...
 
size_t n_clusters {}
 Number of clusters for the cluster method. More...
 
std::vector< mltk::Point< T > > m_centers
 Vector with the centers of the clusters. More...
 
std::vector< mltk::Point< size_t > > m_clusters
 Clusters of points. More...
 
- Protected Attributes inherited from mltk::Learner< T >
std::shared_ptr< Data< T > > samples
 Samples used in the model training. More...
 
double rate
 Learning rate. More...
 
double start_time
 Initial time. More...
 
double max_time
 Maximum time of training. More...
 
int steps
 Number of steps in the data. More...
 
int ctot
 Number of updates of the weights. More...
 
double EPS
 Max precision. More...
 
double MIN_INC
 Minimun Increment. More...
 
int MAX_IT
 Max number of iterations. More...
 
int MAX_UP
 Max number of updates. More...
 
int MAX_EPOCH
 
int verbose
 Verbose level of the output. More...
 
Timer timer
 Timer used to measure the time elapsed in the execution of a Learner. More...
 
size_t seed
 seed for random operations. More...
 
double pred_prob
 

Member Data Documentation

◆ dist_function

template<typename T , typename Callable = metrics::dist::Euclidean <T>>
Callable mltk::clusterer::Clusterer< T, Callable >::dist_function
protected

Function used to compute the metrics between two points.

◆ m_centers

template<typename T , typename Callable = metrics::dist::Euclidean <T>>
std::vector<mltk::Point<T> > mltk::clusterer::Clusterer< T, Callable >::m_centers
protected

Vector with the centers of the clusters.

◆ m_clusters

template<typename T , typename Callable = metrics::dist::Euclidean <T>>
std::vector<mltk::Point<size_t> > mltk::clusterer::Clusterer< T, Callable >::m_clusters
protected

Clusters of points.

◆ n_clusters

template<typename T , typename Callable = metrics::dist::Euclidean <T>>
size_t mltk::clusterer::Clusterer< T, Callable >::n_clusters {}
protected

Number of clusters for the cluster method.


The documentation for this class was generated from the following file: