UFJF - Machine Learning Toolkit  0.51.8
mltk::featselect::FeatureSelection< T > Class Template Referenceabstract
Collaboration diagram for mltk::featselect::FeatureSelection< T >:

Public Member Functions

virtual Data< T > selectFeatures ()=0
 Function that executes the feature selection phase. More...
 
void setSamples (const std::shared_ptr< Data< T > > &samples)
 setSamples Set the samples used for the FeatureSelection. More...
 
void setSamples (const Data< T > &samples)
 
void setClassifier (classifier::Classifier< T > *classifier)
 setClassifier Set the classifier used for the FeatureSelection. More...
 
void setFinalDimension (int final_dim)
 setFinalDimension Set the classifier used for the FeatureSelection. More...
 
void setDepth (int depth)
 setDepth Set the depth of the search. More...
 
void setJump (int jump)
 setJump Set the jump value. More...
 
void setSkip (int skip)
 setSkip Set the skip value. More...
 
void setVerbose (int verbose)
 setVerbose Set the verbose level. More...
 
void setCrossValidation (validation::CrossValidation *cv)
 setCrossValidation Set the cross validation structure. More...
 

Protected Attributes

std::shared_ptr< Data< T > > samples
 Attributes. More...
 
classifier::Classifier< T > * classifier
 Classifier used by the method. More...
 
validation::CrossValidationcv
 Structure to hold the cross-validation result. More...
 
Solution solution
 Solution of the feature selection. More...
 
Timer timer
 Timer for time measuring. More...
 
const int MAX_DEPTH = 99999
 Max depth of search constant. More...
 
const int MAX_BREATH = 99999
 Max breadth of search constant. More...
 
const double NUM_ERROR_EPS = 0.05
 Error tolerance constant. More...
 
int depth = 0
 Depth of search. More...
 
int final_dim = 0
 Final dimension. More...
 
int jump = 0
 Jump size. More...
 
int skip = 0
 Number of levels to be skipped. More...
 
bool leave_one_out = false
 Leave one out. More...
 
int verbose = 0
 Verbose level. More...
 

Member Function Documentation

◆ selectFeatures()

template<typename T >
virtual Data<T> mltk::featselect::FeatureSelection< T >::selectFeatures ( )
pure virtual

Function that executes the feature selection phase.

Returns
void std::shared_ptr<Data< T > >

Implemented in mltk::featselect::RFE< T >, mltk::featselect::Golub< T >, mltk::featselect::Fisher< T >, and mltk::featselect::AOS< T >.

◆ setClassifier()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setClassifier ( classifier::Classifier< T > *  classifier)
inline

setClassifier Set the classifier used for the FeatureSelection.

Parameters
classifierReference to the classifier to be used.

◆ setCrossValidation()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setCrossValidation ( validation::CrossValidation cv)
inline

setCrossValidation Set the cross validation structure.

Parameters
cvCross validation structure.

◆ setDepth()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setDepth ( int  depth)
inline

setDepth Set the depth of the search.

Parameters
depthDepth of search.

◆ setFinalDimension()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setFinalDimension ( int  final_dim)
inline

setFinalDimension Set the classifier used for the FeatureSelection.

Parameters
final_dimThe final number of dimensions.

◆ setJump()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setJump ( int  jump)
inline

setJump Set the jump value.

Parameters
jumpJump value.

◆ setSamples()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setSamples ( const std::shared_ptr< Data< T > > &  samples)
inline

setSamples Set the samples used for the FeatureSelection.

Parameters
samplesSamples to be used.

◆ setSkip()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setSkip ( int  skip)
inline

setSkip Set the skip value.

Parameters
skipSkip value.

◆ setVerbose()

template<typename T >
void mltk::featselect::FeatureSelection< T >::setVerbose ( int  verbose)
inline

setVerbose Set the verbose level.

Parameters
verboseVerbose level.

Member Data Documentation

◆ classifier

template<typename T >
classifier::Classifier<T>* mltk::featselect::FeatureSelection< T >::classifier
protected

Classifier used by the method.

◆ cv

template<typename T >
validation::CrossValidation* mltk::featselect::FeatureSelection< T >::cv
protected

Structure to hold the cross-validation result.

◆ depth

template<typename T >
int mltk::featselect::FeatureSelection< T >::depth = 0
protected

Depth of search.

◆ final_dim

template<typename T >
int mltk::featselect::FeatureSelection< T >::final_dim = 0
protected

Final dimension.

◆ jump

template<typename T >
int mltk::featselect::FeatureSelection< T >::jump = 0
protected

Jump size.

◆ leave_one_out

template<typename T >
bool mltk::featselect::FeatureSelection< T >::leave_one_out = false
protected

Leave one out.

◆ MAX_BREATH

template<typename T >
const int mltk::featselect::FeatureSelection< T >::MAX_BREATH = 99999
protected

Max breadth of search constant.

◆ MAX_DEPTH

template<typename T >
const int mltk::featselect::FeatureSelection< T >::MAX_DEPTH = 99999
protected

Max depth of search constant.

◆ NUM_ERROR_EPS

template<typename T >
const double mltk::featselect::FeatureSelection< T >::NUM_ERROR_EPS = 0.05
protected

Error tolerance constant.

◆ samples

template<typename T >
std::shared_ptr<Data<T> > mltk::featselect::FeatureSelection< T >::samples
protected

Attributes.

Samples where the features will be selected

◆ skip

template<typename T >
int mltk::featselect::FeatureSelection< T >::skip = 0
protected

Number of levels to be skipped.

◆ solution

template<typename T >
Solution mltk::featselect::FeatureSelection< T >::solution
protected

Solution of the feature selection.

◆ timer

template<typename T >
Timer mltk::featselect::FeatureSelection< T >::timer
protected

Timer for time measuring.

◆ verbose

template<typename T >
int mltk::featselect::FeatureSelection< T >::verbose = 0
protected

Verbose level.


The documentation for this class was generated from the following file: