Wrapper for the implementation of the K-Nearest Neighbors classifier algorithm.
More...
|
|
| KNNClassifier (size_t _k, std::string _algorithm="brute") |
| |
|
| KNNClassifier (Data< T > &_samples, size_t _k, std::string _algorithm="brute") |
| |
| bool | train () override |
| | Function that execute the training phase of a Learner. More...
|
| |
| double | evaluate (const Point< T > &p, bool raw_value=false) override |
| | Returns the class of a feature point based on the trained Learner. More...
|
| |
|
Callable & | metric () |
| |
|
void | setPrecomputedDistances (metrics::dist::BaseMatrix _distances) |
| |
|
metrics::dist::DistanceMatrix< Callable > | precomputeDistances (mltk::Data< T > &data, bool diagonal=false, const size_t threads=std::thread::hardware_concurrency()) |
| |
|
| PrimalClassifier (DataPointer< double > samples) |
| |
|
| PrimalClassifier (mltk::Data< double > &samples) |
| |
|
| PrimalClassifier (const PrimalClassifier< double > &primal_learner) |
| |
| double | evaluate (const Point< double > &p, bool raw_value=false) override |
| | Returns the class of a feature point based on the trained Learner. More...
|
| |
| std::string | getFormulationString () override |
| | getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual). More...
|
| |
| double | getP () const |
| | GetP Return the value of the p norm. More...
|
| |
| double | getQ () const |
| | GetQ Return the value of the q norm. More...
|
| |
| void | setqNorm (double q) |
| | setqNorm Set the q norm used by the classifier. (Euclidean norm is the default) More...
|
| |
| void | setpNorm (double p) |
| | setpNorm Set the p norm used by the classifier. (Euclidean norm is the default) More...
|
| |
| void | setFlexible (double flexible) |
| | Set flexibity of the classifier. More...
|
| |
| void | setAlphaAprox (double alpha_aprox) |
| | Set the percentage of the aproximation. More...
|
| |
|
| Classifier (DataPointer< T > samples) |
| |
|
| Classifier (const Classifier< T > &classifier) |
| |
|
virtual double | evaluateProbability (const mltk::Point< double > &p) |
| |
|
mltk::Point< int > | batchEvaluateProbability (const mltk::Data< T > &data) |
| |
| Solution | getSolution () const |
| | getSolution Returns the solution of the classifier. More...
|
| |
| Solution * | getSolutionRef () |
| | getSolution Returns a reference to the solution of the classifier. More...
|
| |
| void | setGamma (double gamma) |
| | Set the gamma (margin) of the classifier. More...
|
| |
| void | setW (std::vector< double > w) |
| | setW Set the weights vector of the classifier. More...
|
| |
| void | setSolution (Solution solution) |
| | setSolution Set a solution for the classifier. More...
|
| |
|
| Learner (DataPointer< T > _samples) |
| |
|
| Learner (const Learner< T > &learner) |
| |
| virtual mltk::Point< double > | batchEvaluate (const Data< T > &data) |
| | evaluate a batch of points. More...
|
| |
| auto | getSamples () |
| | Get the Data used by the learner. More...
|
| |
| double | getElapsedTime () const |
| | Get the elapsed time in the training phase of the Learner. More...
|
| |
| int | getCtot () const |
| | Get the total number of updates of the Learner. More...
|
| |
| int | getSteps () const |
| | getSteps Returns the number of steps through the data by the Learner. More...
|
| |
| int | getUpdates () const |
| | getUpdates Returns the number of updates needed to get to the the solution. More...
|
| |
| double | getMaxTime () const |
| | getMaxTime Returns the maximum running time in the training phase of the Learner. More...
|
| |
| double | getPredictionProbability () const |
| | Get the probability of the last prediction. More...
|
| |
| void | setSeed (const size_t _seed) |
| | Set the seed to be used by the learner. More...
|
| |
| virtual void | setSamples (const Data< T > &data) |
| | setSamples Set the samples used by the Learner. More...
|
| |
| virtual void | setSamples (DataPointer< T > data) |
| | setSamples Set the samples used by the Learner. More...
|
| |
| void | setTimer (Timer _timer) |
| | setTimer Set the timer used by the Learner. More...
|
| |
| void | setSteps (int _steps) |
| | Set the partial number of steps used in the training phase of the Learner. More...
|
| |
| void | setCtot (int _ctot) |
| | Set the partial number of updates of the Learner. More...
|
| |
| void | setVerbose (int _verbose) |
| | Set the level of verbose. More...
|
| |
| void | setStartTime (double stime) |
| | setStartTime Set the initial time of the Learner. More...
|
| |
| void | setMaxTime (double maxtime) |
| | Set the max time of execution. More...
|
| |
| void | setEPS (double eps) |
| | setEPS Set the precision of the Learner. More...
|
| |
| void | setMaxIterations (int max_it) |
| | setMaxIterations Set the max number of iterations of the Learner. More...
|
| |
| void | setMaxEpochs (int MAX_EPOCHS) |
| | Set the max number of epochs for the learner training. More...
|
| |
| void | setMaxUpdates (int max_up) |
| | setMaxIterations Set the max number of updates of the Learner. More...
|
| |
| void | setLearningRate (double learning_rate) |
| | Set the learning rate of the Learner. More...
|
| |
template<typename T = double, typename Callable = metrics::dist::Euclidean<T>>
class mltk::classifier::KNNClassifier< T, Callable >
Wrapper for the implementation of the K-Nearest Neighbors classifier algorithm.