Wrapper for the implementation of the K-Nearest Neighbors classifier algorithm.  
 More...
 | 
| 
  | KNNClassifier (size_t _k, std::string _algorithm="brute") | 
|   | 
| 
  | KNNClassifier (Data< T > &_samples, size_t _k, std::string _algorithm="brute") | 
|   | 
| bool  | train () override | 
|   | Function that execute the training phase of a Learner.  More...
  | 
|   | 
| double  | evaluate (const Point< T > &p, bool raw_value=false) override | 
|   | Returns the class of a feature point based on the trained Learner.  More...
  | 
|   | 
| 
Callable &  | metric () | 
|   | 
| 
void  | setPrecomputedDistances (metrics::dist::BaseMatrix _distances) | 
|   | 
| 
metrics::dist::DistanceMatrix< Callable >  | precomputeDistances (mltk::Data< T > &data, bool diagonal=false, const size_t threads=std::thread::hardware_concurrency()) | 
|   | 
| 
  | PrimalClassifier (DataPointer< double > samples) | 
|   | 
| 
  | PrimalClassifier (mltk::Data< double > &samples) | 
|   | 
| 
  | PrimalClassifier (const PrimalClassifier< double > &primal_learner) | 
|   | 
| double  | evaluate (const Point< double > &p, bool raw_value=false) override | 
|   | Returns the class of a feature point based on the trained Learner.  More...
  | 
|   | 
| std::string  | getFormulationString () override | 
|   | getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual).  More...
  | 
|   | 
| double  | getP () const | 
|   | GetP Return the value of the p norm.  More...
  | 
|   | 
| double  | getQ () const | 
|   | GetQ Return the value of the q norm.  More...
  | 
|   | 
| void  | setqNorm (double q) | 
|   | setqNorm Set the q norm used by the classifier. (Euclidean norm is the default)  More...
  | 
|   | 
| void  | setpNorm (double p) | 
|   | setpNorm Set the p norm used by the classifier. (Euclidean norm is the default)  More...
  | 
|   | 
| void  | setFlexible (double flexible) | 
|   | Set flexibity of the classifier.  More...
  | 
|   | 
| void  | setAlphaAprox (double alpha_aprox) | 
|   | Set the percentage of the aproximation.  More...
  | 
|   | 
| 
  | Classifier (DataPointer< T > samples) | 
|   | 
| 
  | Classifier (const Classifier< T > &classifier) | 
|   | 
| 
virtual double  | evaluateProbability (const mltk::Point< double > &p) | 
|   | 
| 
mltk::Point< int >  | batchEvaluateProbability (const mltk::Data< T > &data) | 
|   | 
| Solution  | getSolution () const | 
|   | getSolution Returns the solution of the classifier.  More...
  | 
|   | 
| Solution *  | getSolutionRef () | 
|   | getSolution Returns a reference to the solution of the classifier.  More...
  | 
|   | 
| void  | setGamma (double gamma) | 
|   | Set the gamma (margin) of the classifier.  More...
  | 
|   | 
| void  | setW (std::vector< double > w) | 
|   | setW Set the weights vector of the classifier.  More...
  | 
|   | 
| void  | setSolution (Solution solution) | 
|   | setSolution Set a solution for the classifier.  More...
  | 
|   | 
| 
  | Learner (DataPointer< T > _samples) | 
|   | 
| 
  | Learner (const Learner< T > &learner) | 
|   | 
| virtual mltk::Point< double >  | batchEvaluate (const Data< T > &data) | 
|   | evaluate a batch of points.  More...
  | 
|   | 
| auto  | getSamples () | 
|   | Get the Data used by the learner.  More...
  | 
|   | 
| double  | getElapsedTime () const | 
|   | Get the elapsed time in the training phase of the Learner.  More...
  | 
|   | 
| int  | getCtot () const | 
|   | Get the total number of updates of the Learner.  More...
  | 
|   | 
| int  | getSteps () const | 
|   | getSteps Returns the number of steps through the data by the Learner.  More...
  | 
|   | 
| int  | getUpdates () const | 
|   | getUpdates Returns the number of updates needed to get to the the solution.  More...
  | 
|   | 
| double  | getMaxTime () const | 
|   | getMaxTime Returns the maximum running time in the training phase of the Learner.  More...
  | 
|   | 
| double  | getPredictionProbability () const | 
|   | Get the probability of the last prediction.  More...
  | 
|   | 
| void  | setSeed (const size_t _seed) | 
|   | Set the seed to be used by the learner.  More...
  | 
|   | 
| virtual void  | setSamples (const Data< T > &data) | 
|   | setSamples Set the samples used by the Learner.  More...
  | 
|   | 
| virtual void  | setSamples (DataPointer< T > data) | 
|   | setSamples Set the samples used by the Learner.  More...
  | 
|   | 
| void  | setTimer (Timer _timer) | 
|   | setTimer Set the timer used by the Learner.  More...
  | 
|   | 
| void  | setSteps (int _steps) | 
|   | Set the partial number of steps used in the training phase of the Learner.  More...
  | 
|   | 
| void  | setCtot (int _ctot) | 
|   | Set the partial number of updates of the Learner.  More...
  | 
|   | 
| void  | setVerbose (int _verbose) | 
|   | Set the level of verbose.  More...
  | 
|   | 
| void  | setStartTime (double stime) | 
|   | setStartTime Set the initial time of the Learner.  More...
  | 
|   | 
| void  | setMaxTime (double maxtime) | 
|   | Set the max time of execution.  More...
  | 
|   | 
| void  | setEPS (double eps) | 
|   | setEPS Set the precision of the Learner.  More...
  | 
|   | 
| void  | setMaxIterations (int max_it) | 
|   | setMaxIterations Set the max number of iterations of the Learner.  More...
  | 
|   | 
| void  | setMaxEpochs (int MAX_EPOCHS) | 
|   | Set the max number of epochs for the learner training.  More...
  | 
|   | 
| void  | setMaxUpdates (int max_up) | 
|   | setMaxIterations Set the max number of updates of the Learner.  More...
  | 
|   | 
| void  | setLearningRate (double learning_rate) | 
|   | Set the learning rate of the Learner.  More...
  | 
|   | 
template<typename T = double, typename Callable = metrics::dist::Euclidean<T>>
class mltk::classifier::KNNClassifier< T, Callable >
Wrapper for the implementation of the K-Nearest Neighbors classifier algorithm.