![]() |
UFJF - Machine Learning Toolkit
0.51.8
|
Validation methods namespace. More...
Classes | |
struct | ValidationReport |
Solution for the validation of a ML method. More... | |
struct | CrossValidation |
Structure to manage cross validation. More... | |
struct | TrainTestPair |
A struct representing a pair with training and test data. More... | |
Functions | |
template<typename T > | |
std::vector< std::vector< size_t > > | generateConfusionMatrix (Data< T > &samples, Learner< T > &learner) |
Compute the confusion matrix for a given trained classifier. More... | |
template<typename T > | |
ValidationReport | metricsReport (const Data< T > &data, const std::vector< std::vector< size_t > > &cfm, std::vector< int > positive_labels=std::vector< int >()) |
Generates a report with classifiers metrics. More... | |
template<typename T , typename Classifier > | |
double | accuracy (const Data< T > &data, Classifier &model, bool trained=true) |
double | confusionMatrixAccuracy (const std::vector< std::vector< size_t > > &conf_matrix) |
Compute the accuracy based on a confusion matrix. More... | |
ValidationReport | classificationReport (const Point< int > &real, const Point< int > &predicted) |
template<typename T > | |
std::vector< TrainTestPair< T > > | kfoldsplit (Data< T > &samples, size_t folds=5, bool stratified=true, bool keepIndex=true, size_t seed=0) |
Split the data in k folds. More... | |
template<typename T > | |
std::vector< TrainTestPair< T > > | kfoldsplit (Data< T > &samples, size_t folds, size_t qtde, bool stratified=true, bool keepIndex=true, size_t seed=0) |
Split the data in k folds multiplied by the number of executions. More... | |
template<typename T > | |
TrainTestPair< T > | partTrainTest (Data< T > &data, size_t fold, bool stratified=true, bool keepIndex=true, size_t seed=0) |
Divide the samples in training and test set. More... | |
template<typename T > | |
ValidationReport | kfold (Data< T > sample, classifier::Classifier< T > &classifier, size_t fold, bool stratified=true, size_t seed=0, int verbose=0) |
Executes k-fold stratified cross-validation. More... | |
template<typename T > | |
ValidationReport | kkfold (Data< T > samples, classifier::Classifier< T > &classifier, size_t qtde, size_t fold, bool stratified=true, size_t seed=0, int verbose=0) |
Executes the validation with several executions of the k fold algorithm. More... | |
Validation methods namespace.
|
inline |
Compute the accuracy based on a confusion matrix.
conf_matrix | A confusion matrix. |
std::vector< std::vector< size_t > > mltk::validation::generateConfusionMatrix | ( | Data< T > & | samples, |
Learner< T > & | learner | ||
) |
Compute the confusion matrix for a given trained classifier.
samples | Data to train the classifier on. |
learner | Classifier to be evaluated. |
ValidationReport mltk::validation::kfold | ( | Data< T > | sample, |
classifier::Classifier< T > & | classifier, | ||
size_t | fold, | ||
bool | stratified = true , |
||
size_t | seed = 0 , |
||
int | verbose = 0 |
||
) |
Executes k-fold stratified cross-validation.
sample | Data to train the classifier on. |
classifier | Classifier to be evaluated. |
fold | Number of folds. |
seed | Seed to feed the pseudo random number generator. |
std::vector< TrainTestPair< T > > mltk::validation::kfoldsplit | ( | Data< T > & | samples, |
size_t | folds, | ||
size_t | qtde, | ||
bool | stratified = true , |
||
bool | keepIndex = true , |
||
size_t | seed = 0 |
||
) |
Split the data in k folds multiplied by the number of executions.
T | Type of the underlying data. |
samples | Data to be splitted. |
folds | Number of folds. |
qtde | Number of executions, the number of folds is the folds value multiplied by the number of executions. |
stratified | If true, the data will be splitted in a stratified manner. |
seed | Seed to feed the pseudo random number generator. |
std::vector< TrainTestPair< T > > mltk::validation::kfoldsplit | ( | Data< T > & | samples, |
size_t | folds = 5 , |
||
bool | stratified = true , |
||
bool | keepIndex = true , |
||
size_t | seed = 0 |
||
) |
Split the data in k folds.
T | Type of the underlying data. |
samples | Data to be splitted. |
folds | Number of folds. |
stratified | If true, the data will be splitted in a stratified manner. |
seed | Seed to feed the pseudo random number generator. |
ValidationReport mltk::validation::kkfold | ( | Data< T > | samples, |
classifier::Classifier< T > & | classifier, | ||
size_t | qtde, | ||
size_t | fold, | ||
bool | stratified = true , |
||
size_t | seed = 0 , |
||
int | verbose = 0 |
||
) |
Executes the validation with several executions of the k fold algorithm.
samples | Data to train the classifier on. |
classifier | Classifier to be evaluated. |
qtde | Number of executions. |
fold | Number of folds. |
stratified | If true, the data will be splitted in a stratified manner. |
seed | seed for the random generator engine. |
verbose | verbose level. |
|
inline |
Generates a report with classifiers metrics.
T | Type of the underlying data. |
data | Data to be used to compute the metrics. |
cfm | Pre-computed confusion matrix. |
positive_labels | Classes to be considered as positive labels. |
TrainTestPair< T > mltk::validation::partTrainTest | ( | Data< T > & | data, |
size_t | fold, | ||
bool | stratified = true , |
||
bool | keepIndex = true , |
||
size_t | seed = 0 |
||
) |
Divide the samples in training and test set.
data | Data to be splitted. |
fold | Number of folds. |
seed | Seed to feed the pseudo random number generator. |