UFJF - Machine Learning Toolkit  0.51.8
mltk::stats Namespace Reference

Namespace for statistical methods. More...

Functions

template<typename T , typename R >
double mean (const mltk::Point< T, R > &p)
 Compute the mean (average) of a point. More...
 
template<typename T >
double mean (const Data< T > &data, size_t feat)
 Compute the mean (average) of a feature in data. More...
 
template<typename T , typename R >
double std_dev (const mltk::Point< T, R > &p)
 Compute the standard deviation of a point. More...
 
template<typename T >
double std_dev (const Data< T > &data, size_t feat)
 Compute the standard deviation of a feature in data. More...
 
template<typename T , typename R >
double var (const mltk::Point< T, R > &p)
 Compute the variance of a point. More...
 
template<typename T >
double var (const Data< T > &data, size_t feat)
 Compute the variance of a feature in data. More...
 
template<typename T , typename R >
double covar (const mltk::Point< T, R > &p, const mltk::Point< T, R > &p1)
 Compute the covariance between two points. More...
 
template<typename T >
double radius (const Data< T > &data, int feat, double q)
 Returns radius of the ball that circ. the data. More...
 
template<typename T >
double distCenters (const Data< T > &data, int feat)
 Compute the distance between the centers of binary classes without given features. More...
 
template<typename T >
double distCentersWithoutFeats (const Data< T > &data, const std::vector< int > &feats, int index)
 Compute the distance between the centers of binary classes without given features. More...
 

Detailed Description

Namespace for statistical methods.

Function Documentation

◆ covar()

template<typename T , typename R >
double mltk::stats::covar ( const mltk::Point< T, R > &  p,
const mltk::Point< T, R > &  p1 
)

Compute the covariance between two points.

Parameters
pFirst point to compute the variance.
p1second point to compute the variance.
Returns
double

◆ distCenters()

template<typename T >
double mltk::stats::distCenters ( const Data< T > &  data,
int  feat 
)

Compute the distance between the centers of binary classes without given features.

Parameters
dataDataset to compute the metrics.
featsFeatures to be excluded from the computation.
indexFeature to be ignored (-1 uses all features).
Returns
double

◆ distCentersWithoutFeats()

template<typename T >
double mltk::stats::distCentersWithoutFeats ( const Data< T > &  data,
const std::vector< int > &  feats,
int  index 
)

Compute the distance between the centers of binary classes without given features.

Parameters
dataDataset to compute the metrics.
featsFeatures to be excluded from the computation.
indexFeature to be ignored (-1 uses all features).
Returns
double

◆ mean() [1/2]

template<typename T >
double mltk::stats::mean ( const Data< T > &  data,
size_t  feat 
)

Compute the mean (average) of a feature in data.

Parameters
featFeature to compute the mean.
Returns
double

◆ mean() [2/2]

template<typename T , typename R >
double mltk::stats::mean ( const mltk::Point< T, R > &  p)

Compute the mean (average) of a point.

Parameters
pPoint to compute the mean.
Returns
double

◆ radius()

template<typename T >
double mltk::stats::radius ( const Data< T > &  data,
int  feat,
double  q 
)

Returns radius of the ball that circ. the data.

Parameters
dataDataset to compute the radius.
featFeature to be ignored (-1 uses all features).
qLp-Norm to be used.
Returns
double

◆ std_dev() [1/2]

template<typename T >
double mltk::stats::std_dev ( const Data< T > &  data,
size_t  feat 
)

Compute the standard deviation of a feature in data.

Parameters
featFeature to compute the standard deviation.
Returns
double

◆ std_dev() [2/2]

template<typename T , typename R >
double mltk::stats::std_dev ( const mltk::Point< T, R > &  p)

Compute the standard deviation of a point.

Parameters
pPoint to compute the mean.
Returns
double

◆ var() [1/2]

template<typename T >
double mltk::stats::var ( const Data< T > &  data,
size_t  feat 
)

Compute the variance of a feature in data.

Parameters
featFeature to compute the variance.
Returns
double

◆ var() [2/2]

template<typename T , typename R >
double mltk::stats::var ( const mltk::Point< T, R > &  p)

Compute the variance of a point.

Parameters
pPoint to compute the variance.
Returns
double