7 #include "Regressor.hpp"
15 std::vector<double>
w;
27 if (p.
X().size() != dim) {
28 std::cerr <<
"The point must have the same dimension of the feature set!" << std::endl;
std::shared_ptr< Data< T > > samples
Samples used in the model training.
Definition: Learner.hpp:21
Rep const & X() const
Returns the attributes representation of the point (std::vector by default).
Definition: Point.hpp:139
std::size_t size() const
Returns the dimension of the point.
Definition: Point.hpp:133
double bias
Bias of the solution.
Definition: Solution.hpp:23
mltk::Point< double > w
Weights vector.
Definition: Solution.hpp:17
Definition: PrimalRegressor.hpp:11
double evaluate(const Point< T > &p, bool raw_value=false) override
Returns the class of a feature point based on the trained Learner.
Definition: PrimalRegressor.hpp:23
std::vector< double > w
Weights vector.
Definition: PrimalRegressor.hpp:15
std::string getFormulationString() override
getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual)...
Definition: PrimalRegressor.hpp:43
Definition: regressor/Regressor.hpp:16
Solution solution
Regressor solution.
Definition: regressor/Regressor.hpp:19
Namespace for regression methods.
Definition: DualRegressor.hpp:10