7 #include "Regressor.hpp"
11 template <
typename T >
25 if(p.x.size() != dim){
26 std::cerr <<
"The point must have the same dimension of the feature set!" << std::endl;
std::size_t size() const
Returns the dimension of the point.
Definition: Point.hpp:133
double bias
Bias of the solution.
Definition: Solution.hpp:23
mltk::Point< double > w
Weights vector.
Definition: Solution.hpp:17
Definition: DualRegressor.hpp:12
std::vector< double > alpha
Alphas vector.
Definition: DualRegressor.hpp:16
std::string getFormulationString() override
getFormulationString Returns a string that represents the formulation of the learner (Primal or Dual)...
Definition: DualRegressor.hpp:41
Kernel< T > * kernel
Object for kernel computations.
Definition: DualRegressor.hpp:18
double evaluate(const Point< T > &p, bool raw_value=false) override
Returns the class of a feature point based on the trained Learner.
Definition: DualRegressor.hpp:21
Definition: regressor/Regressor.hpp:16
Solution solution
Regressor solution.
Definition: regressor/Regressor.hpp:19
UFJF-MLTK main namespace for core functionalities.
Definition: classifier/Classifier.hpp:11